Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2143236

ABSTRACT

COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/therapy , Cytokine Release Syndrome/therapy , Cytokines
2.
Microb Pathog ; 170: 105704, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2036369

ABSTRACT

Patients with SARS-CoV-2 infection, exhibit various clinical manifestations and severity including respiratory and enteric involvements. One of the main reasons for death among covid-19 patients is excessive immune responses directed toward cytokine storm with a low chance of recovery. Since the balanced gut microbiota could prepare health benefits by protecting against pathogens and regulating immune homeostasis, dysbiosis or disruption of gut microbiota could promote severe complications including autoimmune disorders; we surveyed the association between the imbalanced gut bacteria and the development of cytokine storm among COVID-19 patients, also the impact of probiotics and bacteriophages on the gut bacteria community to alleviate cytokine storm in COVID-19 patients. In present review, we will scrutinize the mechanism of immunological signaling pathways which may trigger a cytokine storm in SARS-CoV2 infections. Moreover, we are explaining in detail the possible immunological signaling pathway-directing by the gut bacterial community. Consequently, the specific manipulation of gut bacteria by using probiotics and bacteriophages for alleviation of the cytokine storm will be investigated. The tripartite mutualistic cooperation of gut bacteria, probiotics, and phages as a candidate prophylactic or therapeutic approach in SARS-CoV-2 cytokine storm episodes will be discussed at last.


Subject(s)
Bacteriophages , COVID-19 , Probiotics , Bacteria , COVID-19/therapy , Cytokine Release Syndrome/therapy , Humans , Probiotics/therapeutic use , RNA, Viral , SARS-CoV-2 , Symbiosis
3.
Transfus Apher Sci ; 61(4): 103433, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2016139

ABSTRACT

The risk of mortality in patients with coronavirus disease 2019 (COVID-19) is largely related to an excessive immune response, resulting in a hyperinflammatory and hypercoagulable condition collectively referred to as cytokine storm syndrome (CSS). Management of critically ill patients with COVID-19 has included attempts to abate this process, prevent disease progression, and reduce mortality. In this context, therapeutic plasma exchange (TPE) offers an approach to eliminate inflammatory factors and cytokines, offset the pathologic coagulopathy, and reduce the CSS effects. The aim of this review is to analyze available data on the use of TPE for the treatment of CSS in patients with COVID-19. Systematic searches of PubMed, Scopus and COVID-19 Research were conducted to identify articles published between March 1, 2020 and May 26, 2021 reporting the use of TPE for the treatment of COVID-19-induced CSS. A total of 34 peer-reviewed articles (1 randomized controlled trial, 4 matched case-control series, 15 single-group case series, and 14 case reports), including 267 patients, were selected. Despite the low evidence level of the available data, TPE appeared to be a safe intervention for critically ill patients with COVID-19-induced CSS. Although inconsistencies exist between studies, they showed a general trend for decreased interleukin-6, C-reactive protein, ferritin, D-dimer, and fibrinogen levels and increased lymphocyte counts following TPE, supporting the immunomodulatory effect of this treatment. Moreover, TPE was associated with improvements in clinical outcomes in critically ill patients with COVID-19. While TPE may offer a valuable option to treat patients with COVID-19-induced CSS, high-quality randomized controlled clinical trials are needed to confirm its potential clinical benefits, feasibility, and safety. Moreover, clear criteria should be established to identify patients with CSS who might benefit from TPE.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/therapy , Critical Illness/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Humans , Plasma Exchange , Randomized Controlled Trials as Topic , SARS-CoV-2
4.
Cells ; 11(17)2022 08 29.
Article in English | MEDLINE | ID: covidwho-2005945

ABSTRACT

Medical health systems continue to be challenged due to newly emerging COVID-19, and there is an urgent need for alternative approaches for treatment. An increasing number of clinical observations indicate cytokine storms to be associated with COVID-19 severity and also to be a significant cause of death among COVID-19 patients. Cytokine storm involves the extensive proliferative and hyperactive activity of T and macrophage cells and the overproduction of pro-inflammatory cytokines. Stem cells are the type of cell having self-renewal properties and giving rise to differentiated cells. Currently, stem cell therapy is an exciting and promising therapeutic approach that can treat several diseases that were considered incurable in the past. It may be possible to develop novel methods to treat various diseases by identifying stem cells' growth and differentiation factors. Treatment with mesenchymal stem cells (MSCs) in medicine is anticipated to be highly effective. The present review article is organized to put forward the positive arguments and implications in support of mesenchymal stem cell therapy as an alternative therapy to cytokine storms, to combat COVID-19. Using the immunomodulatory potential of the MSCs, it is possible to fight against COVID-19 and counterbalance the cytokine storm.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Cytokine Release Syndrome/therapy , Cytokines/metabolism , Humans , Mesenchymal Stem Cells/metabolism
5.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(5): 538-541, 2022 May.
Article in Chinese | MEDLINE | ID: covidwho-1903518

ABSTRACT

The new type coronavirus disease 2019 (COVID-19) is a contagious disease of severe lung inflammation induced by 2019 novel coronavirus (2019-nCoV). The World Health Organization (WHO) nomenclature of the newly discovered coronavirus was 2019-nCoV and the disease caused by 2019-nCoV was named COVID-19 on January 12, 2020. After 2019-nCoV invasion into a human body, it can stimulate the human immune system and engender a large number of cytokines, triggering a cytokine storm, resulting in severe infection, acute lung injury, multiple organ dysfunction, etc. Therefore, theoretically, the removal of over-production of cytokines can avoid the occurrence of cytokine storm and reduce the incidence of severe critical COVID-19 and serious poor prognosis. In this review, the authors systematically reviewed the past published reports related to the occurrence of cytokine storm in sepsis resulting in deterioration of disease situation, and recently they analyzed the therapeutic effects of patients with severe critical COVID-19 using endotoxin adsorption membrane for treatment in the disease course, further providing the effective clinical evidence of applying endotoxin adsorption membrane for treatment of COVID-19.


Subject(s)
COVID-19 , Adsorption , COVID-19/therapy , Cytokine Release Syndrome/therapy , Cytokines , Endotoxins , Humans , SARS-CoV-2
6.
Autoimmun Rev ; 21(7): 103114, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1859332

ABSTRACT

From the introduction of hyperferritinemic syndrome concept, a growing body of evidence has suggested the role of ferritin as a pathogenic mediator and a relevant clinical feature in the management of patients with inflammatory diseases. From a pathogenic point of view, ferritin may directly stimulate the aberrant immune response by triggering the production of pro-inflammatory mediators in inducing a vicious pathogenic loop and contributing to the occurrence of cytokine storm syndrome. The latter has been recently defined as a clinical picture characterised by elevated circulating cytokine levels, acute systemic inflammatory symptoms, and secondary organ dysfunction beyond that which could be attributed to a normal response to a pathogen It is noteworthy that the occurrence of hyperferritinemia may be correlated with the development of the cytokine storm syndrome in the context of an inflammatory disease. In addition to adult onset Still's disease, macrophage activation syndrome, catastrophic anti-phospholipids syndrome, and septic shock, recent evidence has suggested this association between ferritin and life-threatening evolution in patients with systemic lupus erythematosus, with anti-MDA5 antibodies in the context of poly-dermatomyositis, with severe COVID-19, and with multisystem inflammatory syndrome. The possible underlying common inflammatory mechanisms, associated with hyperferritinemia, may led to the similar clinical picture observed in these patients. Furthermore, similar therapeutic strategies could be suggested inhibiting pro-inflammatory cytokines and improving long-term outcomes in these disorders. Thus, it could be possible to expand the spectrum of the hyperferritinemic syndrome to those diseases burdened by a dreadful clinical picture correlated with hyperferritinemia and the occurrence of the cytokine storm syndrome. In addition, the assessment of ferritin may provide useful information to the physicians in clinical practice to manage these patients. Therefore, ferritin may be considered a relevant clinical feature to be used as biomarker in dissecting the unmet needs in the management of these disorders. Novel evidence may thus support an expansion of the spectrum of the hyperferritinemic syndrome to these diseases burdened by a life-threatening clinical picture correlated with hyperferritinemia and the occurrence of the cytokine storm syndrome.


Subject(s)
COVID-19 , Hyperferritinemia , Macrophage Activation Syndrome , Still's Disease, Adult-Onset , Adult , COVID-19/complications , Cytokine Release Syndrome/therapy , Cytokines , Ferritins , Humans , Hyperferritinemia/therapy , Macrophage Activation Syndrome/complications , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/therapy , Still's Disease, Adult-Onset/complications , Still's Disease, Adult-Onset/diagnosis , Still's Disease, Adult-Onset/therapy
7.
Brain Behav Immun ; 87: 34-39, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719335

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic is a significant psychological stressor in addition to its tremendous impact on every facet of individuals' lives and organizations in virtually all social and economic sectors worldwide. Fear of illness and uncertainty about the future precipitate anxiety- and stress-related disorders, and several groups have rightfully called for the creation and dissemination of robust mental health screening and treatment programs for the general public and front-line healthcare workers. However, in addition to pandemic-associated psychological distress, the direct effects of the virus itself (several acute respiratory syndrome coronavirus; SARS-CoV-2), and the subsequent host immunologic response, on the human central nervous system (CNS) and related outcomes are unknown. We discuss currently available evidence of COVID-19 related neuropsychiatric sequelae while drawing parallels to past viral pandemic-related outcomes. Past pandemics have demonstrated that diverse types of neuropsychiatric symptoms, such as encephalopathy, mood changes, psychosis, neuromuscular dysfunction, or demyelinating processes, may accompany acute viral infection, or may follow infection by weeks, months, or longer in recovered patients. The potential mechanisms are also discussed, including viral and immunological underpinnings. Therefore, prospective neuropsychiatric monitoring of individuals exposed to SARS-CoV-2 at various points in the life course, as well as their neuroimmune status, are needed to fully understand the long-term impact of COVID-19, and to establish a framework for integrating psychoneuroimmunology into epidemiologic studies of pandemics.


Subject(s)
Coronavirus Infections/psychology , Cytokine Release Syndrome/psychology , Mental Disorders/psychology , Nervous System Diseases/psychology , Pneumonia, Viral/psychology , Acute Disease , Anxiety/etiology , Anxiety/immunology , Anxiety/psychology , Bacterial Translocation , Betacoronavirus , COVID-19 , Chronic Disease , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Demyelinating Diseases/etiology , Demyelinating Diseases/immunology , Demyelinating Diseases/physiopathology , Demyelinating Diseases/psychology , Depression/etiology , Depression/immunology , Depression/psychology , Humans , Immunologic Factors/adverse effects , Mental Disorders/etiology , Mental Disorders/immunology , Mental Health , Nervous System Diseases/etiology , Nervous System Diseases/immunology , Nervous System Diseases/physiopathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/psychology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Psychoneuroimmunology , Psychotic Disorders/etiology , Psychotic Disorders/immunology , Psychotic Disorders/psychology , Public Health , SARS-CoV-2 , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/immunology , Stress Disorders, Post-Traumatic/psychology
8.
Int J Biol Sci ; 18(2): 459-472, 2022.
Article in English | MEDLINE | ID: covidwho-1667649

ABSTRACT

The COVID-19 outbreak is emerging as a significant public health challenge. Excessive production of proinflammatory cytokines, also known as cytokine storm, is a severe clinical syndrome known to develop as a complication of infectious or inflammatory diseases. Clinical evidence suggests that the occurrence of cytokine storm in severe acute respiratory syndrome secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is closely associated with the rapid deterioration and high mortality of severe cases. In this review, we aim to summarize the mechanism of SARS-CoV-2 infection and the subsequent immunological events related to excessive cytokine production and inflammatory responses associated with ACE2-AngII signaling. An overview of the diagnosis and an update on current therapeutic regimens and vaccinations is also provided.


Subject(s)
COVID-19/complications , COVID-19/pathology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/pathology , SARS-CoV-2 , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/immunology , Humans
9.
Exp Biol Med (Maywood) ; 247(4): 330-337, 2022 02.
Article in English | MEDLINE | ID: covidwho-1649719

ABSTRACT

Cytokine storm is an umbrella term that describes an inflammatory syndrome characterized by elevated levels of circulating cytokines and hyperactivation of innate and/or adaptive immune cells. One type of cytokine storm is hemophagocytic lymphohistiocytosis (HLH), which can be either primary or secondary. Severe COVID-19-associated pneumonia and acute respiratory distress syndrome (ARDS) can also lead to cytokine storm/cytokine release syndrome (CS/CRS) and, more rarely, meet criteria for the diagnosis of secondary HLH. Here, we review the immunobiology of primary and secondary HLH and examine whether COVID-19-associated CS/CRS can be discriminated from non-COVID-19 secondary HLH. Finally, we review differences in immunobiology between these different entities, which may inform both clinical diagnosis and treatment of patients.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/etiology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Cytokine Release Syndrome/virology , Humans , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/therapy
10.
Front Immunol ; 12: 631233, 2021.
Article in English | MEDLINE | ID: covidwho-1575223

ABSTRACT

Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Cannabinoids/therapeutic use , Cannabis/immunology , Cytokine Release Syndrome/therapy , Phytotherapy , SARS-CoV-2/physiology , Endocannabinoids/metabolism , Humans , Pandemics
11.
Inflammopharmacology ; 29(5): 1347-1355, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1557643

ABSTRACT

The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and collar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential therapeutic use in managing cytokine storm in COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/therapy , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/therapy , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Disease Management , Humans , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/agonists , Oxidative Stress/drug effects , Oxidative Stress/physiology
12.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1551605

ABSTRACT

The "normal" immune response to an insult triggers a highly regulated response determined by the interaction of various immunocompetent cells with pro- and anti-inflammatory cytokines. Under pathologic conditions, the massive elevation of cytokine levels ("cytokine storm") could not be controlled until the recent development of hemoadsorption devices that are able to extract a variety of different DAMPs, PAMPs, and metabolic products from the blood. CytoSorb® has been approved for adjunctive sepsis therapy since 2011. This review aims to summarize theoretical knowledge, in vitro results, and clinical findings to provide the clinician with pragmatic guidance for daily practice. English-language and peer-reviewed literature identified by a selective literature search in PubMed and published between January 2016 and May 2021 was included. Hemoadsorption can be used successfully as adjunct to a complex therapeutic regimen for various conditions. To the contrary, this nonspecific intervention may potentially worsen patient outcomes in complex immunological processes. CytoSorb® therapy appears to be safe and useful in various diseases (e.g., rhabdomyolysis, liver failure, or intoxications) as well as in septic shock or cytokine release syndrome, although a conclusive assessment of treatment benefit is not possible and no survival benefit has yet been demonstrated in randomized controlled trials.


Subject(s)
Cytokine Release Syndrome/therapy , Cytokines , Shock, Septic/therapy , Animals , Anti-Bacterial Agents , COVID-19 , Cytokine Release Syndrome/immunology , Cytokines/blood , Databases, Factual , Humans , Hyperbilirubinemia , Rhabdomyolysis , Sepsis/blood , Shock, Septic/immunology
13.
Biomed Res Int ; 2021: 3178796, 2021.
Article in English | MEDLINE | ID: covidwho-1541947

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health and social stability. The main route of the transmission is droplet transmission, where the oral cavity is the most important entry point to the body. Due to both the direct harmful effects of SARS-CoV-2 and disordered immune responses, some COVID-19 patients may progress to acute respiratory distress syndrome or even multiple organ failure. Genetic variants of SARS-CoV-2 have been emerging and circulating around the world. Currently, there is no internationally approved precise treatment for COVID-19. Mesenchymal stem cells (MSCs) can traffic and migrate towards the affected tissue, regulate both the innate and acquired immune systems, and participate in the process of healing. Here, we will discuss and investigate the mechanisms of immune disorder in COVID-19 and the therapeutic activity of MSCs, in particular human gingiva mesenchymal stem cells.


Subject(s)
COVID-19/therapy , Cytokine Release Syndrome/therapy , SARS-CoV-2/genetics , COVID-19/immunology , Cytokine Release Syndrome/immunology , Genetic Variation , Gingiva/cytology , Humans , Mesenchymal Stem Cell Transplantation , SARS-CoV-2/immunology
14.
J Cell Mol Med ; 26(1): 228-234, 2022 01.
Article in English | MEDLINE | ID: covidwho-1532813

ABSTRACT

The outbreak of COVID-19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID-19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS-CoV-2 entry has been detected in all MSC samples. These results are of particular importance for future MSC-based cell therapies to treat severe cases after COVID-19 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/therapy , Mesenchymal Stem Cell Transplantation/methods , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Gene Expression Profiling , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Primary Cell Culture , Protein Binding , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism
15.
Clin Transl Sci ; 14(6): 2146-2151, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526353

ABSTRACT

Tocilizumab is an IL-6 receptor antagonist with the ability to suppress the cytokine storm in critically ill patients infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). We evaluated patients treated with tocilizumab for a SARS-CoV-2 infection who were admitted between March 13, 2020, and April 16, 2020. This was a multicenter study with data collected by chart review both retrospectively and concurrently. Parameters evaluated included age, sex, race, use of mechanical ventilation (MV), usage of steroids and vasopressors, inflammatory markers, and comorbidities. Early dosing was defined as a tocilizumab dose administered prior to or within 1 day of intubation. Late dosing was defined as a dose administered > 1 day after intubation. In the absence of MV, the timing of the dose was related to the patient's date of admission only. We evaluated 145 patients. The average age was 58.1 years, 64% were men, 68.3% had comorbidities, and 60% received steroid therapy. Disposition of patients was 48.3% discharged and 29.3% died, of which 43.9% were African American. MV was required in 55.9%, of which 34.5% died. Avoidance of MV (P = 0.002) and increased survival (P < 0.001) was statistically associated with early dosing. Tocilizumab therapy was effective at decreasing mortality and should be instituted early in the management of critically ill patients with coronavirus disease 2019) COVID-19).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , COVID-19/therapy , Cytokine Release Syndrome/therapy , Respiration, Artificial/statistics & numerical data , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Critical Illness/mortality , Critical Illness/therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Female , Hospital Mortality , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors , Time-to-Treatment , Treatment Outcome
17.
Pediatrics ; 148(5)2021 11.
Article in English | MEDLINE | ID: covidwho-1484901

ABSTRACT

A term infant girl with uneventful antenatal history had an erythematous rash followed by fever from day 8. She was diagnosed with late-onset sepsis and was treated accordingly. She received immunoglobulin for persistent thrombocytopenia, after which there was transient improvement. The patient was transferred to our hospital on day 25 after recurrence of fever, watery diarrhea, and a generalized maculopapular rash. On admission, she had tachycardia, tachypnoea, anemia, thrombocytopenia, hypoalbuminemia, and generalized edema. Reverse transcriptase-polymerase chain reaction results for coronavirus disease 2019 (COVID-19) was positive. Within 12 hours of admission, she developed cardiogenic shock with pulmonary edema and needed invasive ventilation. Echocardiography revealed ejection fraction of 40% with mild pericardial effusion. N-terminal pro-brain natriuretic peptide was 33000 g/L, D-dimer 16500 µg/L, and ferritin 16000 ng/mL. Methylprednisolone, immunoglobulin, and enoxaparin was started, with a diagnosis of multisystem inflammatory syndrome in children, associated with COVID-19. She developed seizures, pulmonary hemorrhage, and cardiac arrest the following day, along with acute kidney injury. She was extubated after 5 days. Steroid was stopped after 5 days because she developed hypertension and echocardiography had normalized. Five days after extubation, she again developed respiratory distress and was ventilated again for 2 days. Echocardiography revealed moderate left ventricular dysfunction, along with secondary elevation of ferritin. Methylprednisolone was restarted and continued for 5 days followed by tapering dose of oral prednisolone, on which she was finally discharged. Although mild myocarditis with COVID-19 has been reported, multisystem inflammatory syndrome in children in a newborn with refractory myocarditis, along with gastrointestinal and renal manifestations, is a rare entity. Dermatologic manifestation of neonatal COVID-19 is also unique.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome , Systemic Inflammatory Response Syndrome , COVID-19/diagnosis , COVID-19/therapy , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/virology , Female , Humans , Infant, Newborn , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/therapy
18.
Cells ; 10(11)2021 10 25.
Article in English | MEDLINE | ID: covidwho-1480601

ABSTRACT

As the number of confirmed cases and deaths occurring from Coronavirus disease 2019 (COVID-19) surges worldwide, health experts are striving hard to fully comprehend the extent of damage caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although COVID-19 primarily manifests itself in the form of severe respiratory distress, it is also known to cause systemic damage to almost all major organs and organ systems within the body. In this review, we discuss the molecular mechanisms leading to multi-organ failure seen in COVID-19 patients. We also examine the potential of stem cell therapy in treating COVID-19 multi-organ failure cases.


Subject(s)
COVID-19/complications , COVID-19/therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/therapy , Stem Cell Transplantation , COVID-19/immunology , Clinical Trials as Topic , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Humans , Immunomodulation , Multiple Organ Failure/immunology , Regenerative Medicine , SARS-CoV-2/pathogenicity , Stem Cells/cytology , Stem Cells/immunology
19.
Front Immunol ; 12: 738697, 2021.
Article in English | MEDLINE | ID: covidwho-1477824

ABSTRACT

The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted the urgent need for novel therapies. Cell-based therapies, primarily using mesenchymal stromal cells (MSCs), have demonstrated safety and potential efficacy in the treatment of critical illness, particularly sepsis and acute respiratory distress syndrome (ARDS). However, there are limited preclinical data for MSCs in COVID-19. Recent studies have shown that MSCs could decrease inflammation, improve lung permeability, enhance microbe and alveolar fluid clearance, and promote lung epithelial and endothelial repair. In addition, MSC-based therapy has shown promising effects in preclinical studies and phase 1 clinical trials in sepsis and ARDS. Here, we review recent advances related to MSC-based therapy in the context of sepsis and ARDS and evaluate the potential value of MSCs as a therapeutic strategy for COVID-19.


Subject(s)
COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/therapy , Mesenchymal Stem Cell Transplantation/methods , Cytokine Release Syndrome/pathology , Humans , Inflammation/therapy , Mesenchymal Stem Cells/immunology , SARS-CoV-2 , Sepsis/therapy
20.
Signal Transduct Target Ther ; 6(1): 367, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475287

ABSTRACT

Cytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.


Subject(s)
Cytokine Release Syndrome , Signal Transduction/immunology , Acute Disease , Autoimmune Diseases/complications , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , COVID-19/complications , COVID-19/immunology , COVID-19/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Graft vs Host Disease/complications , Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive/adverse effects , Influenza, Human/complications , Influenza, Human/immunology , Neoplasms/complications , Neoplasms/immunology , Neoplasms/therapy , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/therapy
SELECTION OF CITATIONS
SEARCH DETAIL